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Abstract—Nonaxisymmetric bifurcation behaviour of bilayered tubes subjected to uniform shrink-
age at the external surface under plane strain conditions has been investigated und compared with
that of single tubes. The influence of the thickness ratio and the ratios of matertal properties upon
the bifurcation behaviour has been clarified. The yield stress ratio and hardening exponent ratio
substantially atfect the bifurcation mode with long wavelength.

Surface-type bifurcation depends entirely on the material characteristies of the inner tube, so
that the surface-type bifurcation point of a bilayered tube nearly coincides with that of a single tube
with the same material propertics as those of the inner tube.

INTRODUCTION

When a thick-walled bilaycred tube is deformed axisymmetrically up to a certain limit
through a frictionless dic as in the tube drawing and sinking processes, a bifurcation
from the fundamental axisymmetric deformation to nonaxisymmetric deformation becomes
possible. This bifurcation can be represented us the onset of circumterential waves with
long wavelength throughout the thickness of the tube or with short wavelength (referred
to as surtuce-type bifurcation) over the traction-free inner surface. For certain combinations
of material properties and dimensions of the tubes, the surface type bifurcation—surface
instability —is preferred.

As the tube deforms further beyond this bifurcation point, the surface unevenness will
grow considerably and the nonuniform deformation will propagate deeply beneath the
traction-free inner surface. For a given tube with little ductility, this nonuniform defor-
mation may lead to the development of deformation localization into a narrow shear band,
which may govern the tinal fracture of the tube. An analysis to determine the condition for
the onset of such bifurcation and the corresponding mode can be carried out within the
framework of Hill's (1958) bifurcation analysis, and the localization of deformation after
the onset of such bifurcation can be traced by the post-bifurcation analysis of deformation.

Tomita et al. (1985) analysed the influences of material properties and dimensions of
the tubes upon the bifurcation behaviour of a single tube subjected to uniform shrinkage
at the external surface and Kim er af. (1989) clarificd the localization of the deformation
into a narrow shear band. Recently, due to the rapid increase of compositc materials for
special purposes, a number of investigations of the deformation characteristics of composite
materials relating to real metal forming processes such as upsetting (Dorris and Nemat-
Nasser, 1980) and plate rolling (Stief, 1987) has been performed. However, few theoretical
investigations have been performed to clarify the deformation behaviour of bilayered tubes
during the forming processcs.

In this paper our attention is directed toward the bifurcation behaviour of bilayered
tubes subjected to a uniform drawing or sinking process through a frictionless dic. In order
to clarify the influence of material property ratios and the thickness ratio upon bifurcation
behaviour, the above-mentioned process is simplified to the process of uniform shrinkage
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at the external surface under plane strain. With Hill's (1958) general theory of bifurcation
and uniqueness in elastic-plastic solids, the bifurcation behaviour of bilavered tubes sub-
jected to uniform shrinkage at the external surface under the plane strain condition are
investigated numerically and compared with those of single tubes.

The tube is assumed to be characterized by the J. corner theory of Christotfersen and
Hutchinson (1979). In the bifurcation analysis. the loading path during axisymmetric
deformation is nearly proportional and Budiansky’s (1959) total loading condition is
satisfied everywhere. so that the material of the tubes is assumed to be characterized by the
hypoelastic J. deformation theory by Needleman and Tvergaard (1977). a special case of
which was given by Storen and Rice (1973). Furthermore, the material of the tubes is
conveniently assumed to be incompressible in order to obtain a closed form solution to the
fundamental axisymmetric deformation problem.

BASIC ANALYSIS

The governing equations for an elastic-plastic boundary value problem are given
within the context of large strain theory. An updated Lagrangian formulation of the field
and constitutive equation is employed. Consider a body with volume V and surfuce S
subjected to a velocity constraint on S, and a nominal traction rate £, on S,. In the absence
of body forces. the solution for an equilibrium state at the current configuration can be
determined by the virtual work principle,

-

J (S, + Ol w)or,, dV = Por, ds. (hH

Jae

where the virtual velocity or, satisfies the homogencous boundary condition over the surface
S, 8, is Kirchhoft stress, which is identical to Cauchy stress a,, in the current configuration.
(-) 1 the material time dertvative of (1), and (), denotes partial differentiation with respect
to the current Cartesian coordinate x,.

As long as the deformation is sufficiently small, the elastic-plastic boundary value
problem has a unique solution, which is referred to a fundamental solution. When the
deformation reaches a certain limit, bifurcation from a fundumental solution to u second
solution becomes possible. The condition tfor the onset of bifurcation and the corresponding
mode can be found through the use of Hill's (1958) general theory of bifurcation. This
theory states that the solution is not unique when a nontrivial solution can be found for
the eigenvalue problem given by the following variational equation

™

51 =0, 1=J (AS, + 6., At )Ar, , dV. (2)

Here, A denotes the difference between the fundamental solution and the sccond solution.
The stress rate S,-, is related to the strain rate £, by the linear comparison solid of Hill (1938)
in which elastic unloading from the plastic zone is excluded, and thus the plastic branch of
the constitutive tensor is employed for the current plastic zone. Therefore the lower bound
ol the bifurcation point for the elastic-plastic solid is given by the bifurcation point for the
lincar comparison solid.

CONSTITUTIVE EQUATIONS

The constitutive equation employed here is that expressed by the J, corner theory of
Christoffersen and Hutchinson (1979) which permits the development of a corner on the
yicld surface at the current loading point. The formation of a corner on the yicld surface
has reccived considerable application in studics of post-bifurcation phecnomena with a
strong deviation from proportional loading in the plastic range. as observed by Tvergaard
et al. (1981). Larrson et al. (1982). Tomita ¢f al. (1986) and Kim er al. (1989). In the J,
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corner theory the instantancous moduli for nearly proportional loading are chosen equal
to those of the large strain generalization of J. deformation theory and for increasing
deviation from proportional loading the moduli increase monotonically until they coincide
with the linear moduli for elastic loading.

The loading path during fundamental axisymmetric deformation is one that is nearly
proportional. and satisties the total loading condition ot Budiansky (1939) everywhere. so
that the hypoelastic J, deformation theory described by Needleman and Tvergard (1977)
is employed. The assumption of material incompressibility makes it convenient to obtain a
closed form solution to the fundamental axisymmetric deformation problem. The consti-
tutive equation of hypeelastic J; deformation theory can then be simplified as follows

Vo, = Dég. S, = (D — Fudéa.
Dl/kl = (£, 3)(04 ()-// + (j:/‘j/k) - 'I(E\— El)(O',’,'TLp 65).
Fr/kl = (Grl (jk/ + G.k/(ill + G/I (Slk +dtk (S//)"2~

A‘Ek/ = (l‘k_[+lv/_/\)‘f"2. (3)
n = 1o plastic deformation,  n = 0: elastic deformation,

where a;, and o, are respectively the Cauchy deviatoric stress and the effective von Mises
stress, g, = \/(Jrr,',a,',/Z). Va,, is the Juumann co-rotational rate of the Cauchy deviatoric
stress a;, and &, is the Eulerian strain rate tensor. 8, is the Kronecker delta. D4, are the
instantancous modult and F,, 15 the fourth order tensor. £, and £, are respectively the
secant and tangent moduli for the uniaxial true stress  logarithmic strain curve at the
current value ol o, Furthermore, the constitutive equation (3) can be expressed in terms
of the rate of Cauchy deviatorie stress Va! and logarithmic strain rate & relative to the
principal axes of deformation

Vo, = (253, =gl — E)o. ool )i, (4)

In the present case of uniform shrinkage, in which the principal axes of logarithmic
strain do not rotate relative to the material and coincide with the eylindrical coordinate
axes, the constitutive equation (4) can be integrated to give the deviatorie true stress and
logarithmic strain relation in principal axes as in Neale (1981), as follows

a =2E:/3, (i=1713). (5)

The principal logarithmic strains ¢, are related to the princtpal stretches 4, in the form
¢ = In 4. Due to the material incompressibility the relation of 44,4, = 1 is preserved. The
material of cach tube is characterized by the following true stress o,—logarithmic strain ¢
curve in uniaxial tension:

&

6, ) 6
/ (U:/’Un)m' Gl‘l < (T” ( )

1f

, { Ul/().‘l' (r)‘l 2 UI‘
e =

{= 1 inncertube, /=2 outer tube,

where o, (= £, 1s the yield stress and &, is the yield strain. £, s Young's modulus and »,
is the work hardening exponent.

PRE-BIFURCATION ANALYSIS

Consider the prebifurcation state of a bilaycred tube subjected to uniform shrinkage
at the external surface under plane strain conditions. The internal, external and arbitrary
radii in the undeformed state are A. B and R respectively, and in the deformed state
correspondingly a. A and r. C and ¢ denote the radius of the interface between the inner
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A.B.C: Undeformaead state
a.b,c:Deformed stete

! element

B/A=1.4
£ =(C-A)/(B-A)
€ =(R-A)/(B-A)

Fig. [ Coordinate system of the bilavered tube and Anite clement mesh for bifurcation anatysis

tube | and the outer tube 2 in the undeformed and detormed states respectively. The
cylindrical coordinate system whercin the indices arcidentificd as v, = r.x, = 0and x, = -
is shown in Fig. [. Since the tube deforms axisymmetrically in the prebifurcation state, the
stress state can be expressed as a function of r only and thus the equilibrium cquation for
axisymmetric deformation becomes

do/dr+ (6, —a,)r = 0. (7)

Duc to the material incompressibility and the plane strain condition the principal stretches
at rwith onginal radius R are found to be

with 4 = r/R.

Using the constitutive equation (5), the principal strains und the equivalent stress arce
cxpressed as

£, = (3206 E)., =320\ L), & =0, (9)
/0 / .
ay = (32, ~a.) = —(2 (V3 EIn 4
The sccant modulus £, (= ¢,¢,) and tangent modulus £, { = ds,’de)) tor the uniaxial
true stress -logarithmie strain curve at o, are given by

. JE,, G, =0,
L, = lli(ﬂ,ﬁ.;)l "G, <o,
(10)
) (L. G, Za,.
b = l(lf,,u)(o‘, a ) "M 6, <a.
i = 1: innertube. /=2 ouler tube.

Under the assumption of fully plastic deformation ot the bilayered tube. the equilibrium
equation (7) for the axisymmetric deformation with the ficld equations (8)-(10) gives the
fundamental stress distributions as follows:
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inner tube | :

g = —A i‘ (lf"‘)(ln(Ri'f))Mld" Gy =C’r|“At(m(R/”))lv"l' (1D

~

outer tube 2:

= = j (Lin (In(R'7))' "‘dr—A:f (1/r)(in (R/r) ' "3 dr.

Gus = G,a— A (IN (RPN, 0, = (0,4 04)/2.

A = GE MRS de ) = L2

The stress distribution during the axisymmetric deformation is obtained by numerical
integration of eqn (11) with the condition that the volume remains constant :

a=JB =B +dY). r=J(b*~B+R). (12)

BIFURCATION ANALYSIS

When the tube is shrunk beyond a certain limit under the same boundary conditions,
bifurcation from the fundamental axisymmetric deformation to nonaxisymmetric defor-
mation becomes possible. The bifurcation point and corresponding mode can be obtained
by using Hill's (1958) general theory of uniqueness and bifurcation in the clastic-plastic
solids.

Since the condition of material incompressibility is preserved throughout the whole
deformation including that ruling throughout the bifurcation solution, the physical com-
ponents of admissible velocity in the radial and circumferential direction of the tube are
defined by a stream function ¢ such that

Ar, = —(1/n)(Cpjety, Ar, = Opjir. ER)]

Consequently, the nonzero components of the velocity gradient and strain rate
associated with the admissible veloceity are

Ar,, = (1r* ) cO) = (Ur(Sp/erd),  Avyy = —Av,,,
Ar,y = ~ (1 r* )@ [07) = (U r)(@pjdr),  Avy, = O ¢[or?,
Ak, = At = () (Eh1o0) ~ (U r)@2p[r 30),  Aéw = — A,
Adiy = = (Lir)(@2pJC0%) = (N r)(Oepjir) + 22 plor, (14)

For the problem considered here, the stresses associated with the fundamental solution are
in the plastic zone throughout their whole riange, and it is assumed that the stress rate at the
bifurcation point does not strongly deviate from the whole loading range of the fundamental
solution. The moduli D, in cyn {3) which are identified with the help of the fundamental
stress distribution can therefore be used in the bifurcation analysis. For the case in which
the stress rate deviates from the whole loading range, employment of the same moduli D, ,,
in eqn (3) may provide a lower bound to the bifurcation point. In the same manner as in
a singlc tube (Tomita ¢t af., 1983). with constitutive equation (3), and velocity gradient and
strain rate in eqn (14). Hill's vanational equation (2) may be specified for the present
problem:

5A3 29:22-D
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[BLAéL + C(2A6m) +a, v7, + 0., A7) rdrdt

+ J ‘- [B.A8é, + Co (288007 +6,.805, +a4:A07 ) rdrdd,  (15)
)

v

B =3)E, —06,—0a,. C=E, 3~(6,+0.,)2 =12

Even when the bilayered tube deforms plastically. the values of B, ~ C.and a,, ~ a,,
are dependent on the material properties of the bitayered tube. These values thus affect the
bifurcation behaviour of the bilayered tube. The boundary conditions for the admissible

velocity components Ae,, Av, are expressed as
Atiboo = A0 s e Atidasy . =0 (16)

For these boundary conditions the stream function ¢ can then be represented in terms
ot a Fourier sine series in the ¢ direction

‘

$d =3 h,r)sinml, (17

=

where ¢, is the amplitude of the bifurcation mode - a tunction of r only —and m is the
mode number of the bifurcation, the circumterential wave number. It should be noted that
the special case of me =0 in ¢qn (17) leads to the axisymmetric deformation of the funda-
mental solution. Substituting eqn (17) into biturcation functional, 7, of eqn (13), integrating
with respect to (0, and noting the orthogonality of the trigonometric functions, the bifur-
cation functional, /. is expressed in i completely separated form with respect to the
bifurcation mode, as follows

I=3% 1. (18)

o=t

~

L, = ftJ By {1y = (U ryd * + Coim? 7Y, — (gL, + ¢}

h

0, (o) + an (), = (U0 dClrdr | [Bun® ((Lrd) g, — (1))

m
v

+Co Iy = (1P + i) 2+ 6,200 + s Lm i), — (Lr) e} *]rdr,
with () =d()dr and ()Y =d°()dr.

In obtaining the stationary condition for the bifurcation tunctional f of egn (18), line
finite elements with interpolation functions of Hermitian type which assure the C' continuity
on the element boundaries are employed to approximate the amplitude of the bifurcation
mode within an clement. After a lengthy but straightforward calculation, we finally arrive
at an approximate bifurcution functional:

L= {40, " [K,]1A0,}. (19
where {Ad,,} denotes the values of ¢, and ¢, at the nodal points. The matrix [K,] can be

determined at the same line in the finite element method and depends on the current
stressses, bifurcation mode number. m, interpolation functions and their derivatives with
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respect to radial direction. The stationary condition for the approximate bifurcation func-
tional leads to homogeneous equations with regard to the magnitude of {AJ,,} :

(K.J{AS,) =0, m=1.23.... (20)

If one of these homogeneous equations has a nontrivial solution. bifurcation may take
place. The associated bifurcation mode is obtained as the eigenmode of the homogeneous
equations. In the numerical calculation of the fundamental solution the external surface of
the tube shown in Fig. 1 is continuously drawn uniformly and the corresponding stresses
are determined by eqns (11) and (12). After each incremental drawing a check is made for
the vanishing of the determinant of [K,,]. the matrices of coefficients. for several bifurcation
mode numbers m :

det[K,] =0. m=1.23... @

Usually, when the sign of det [K,,] changes at a specific incremental step. an iterative method
is used to determine an accurate bifurcation point associated with the vanishing determinant.

NUMERICAL RESULTS AND DISCUSSION

A schematic view of the bilaycred tube in a cylindrical coordinate system is shown in
Fig. |. Thickness ratios, { = (C— A)/(8— A), of magnitudes 0.05 and 0.25 are considered,
representing bilayered tubes with thin and thick inner tubes respectively. These two thickness
ratios can show the effect of thickness ratio on the bifurcation behaviour of bilayered tubes.
In discretizing the tube into line finite clements with two nodes, to clarify the bifurcation
behaviour, the size of elements adopted is small near the traction-free inner surface and the
interface between the inner tube | and outer tube 2, whereas the element size increases
exponentially away from the interface in the radial direction. When we take the total number
of elements to be 179, the corresponding smallest element has a size of the order of 1/5000
of the thickness of the bilayered tube. This element discretization captures the abrupt change
of the short-wavelength mode near the traction-free inner surface and the interface between
inner and outer tubes.

Since the traction-free inner surface is highly compressed under uniform shrinkage at
the external surface, the deformation of the inner surface is apt to bifurcate into the
deformation of the short-wavelength mode. The surface type bifurcation occurs when the
tube first meets the following condition due to Hill and Hutchinson (1975) for instability
of an incompressible material under a uniform plane strain field

a1 =11 =2e)/(1 + 26} ] = 1/n (22)
with £, = —In (Ad/a).

The effect of the hardening exponent on the bifurcation behaviour of a single tube is
shown in Fig. 2 to compare it with that of bilaycred tubes. The critical bifurcation in the
long-wavclength mode is defined as the bifurcation occurring first in the deformation
history. The bifurcation strain for the surfacc type bifurcation corresponding to modc
number m = 500 coincides with that obtained from eqn (22) up to three significant digits,
as was the case in Tomita ¢z al. (1985). According to Fig. 2 it is verified that the critical
bifurcation mode number for long wavelength is independent of the value of the hardening
cxponent nand occurs in the range 6-7. As the hardening exponent increases. the fluctuation
of bifurcation strain —In (b/B) with change of mode number becomes remarkable. It is
certain that the surface type bifurcation is the first instability encountered in the deformation
history of tubes with low hardening exponent, whereas the long-wavelength mode bifur-
cation is that for the tubes with high hardening exponent.
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Fig. 2. Mode number m versus biturcation strain —In (b B) for single tube.

For two thickness ratios, £, the effects of material property ratios such as the hardening
exponent ratioa = n/n,. yield stressratio i = /0., and Young's modulus ratio y = £,/ E,
on the bifurcation behaviour are investigated. x. ff and v vary relatively to the properties of
the external tube which are specified as £, = 21000 Kgf mm ~* (205.9 GPa), ., = 40 Kgf
mm " (0.392 GPa) and n, = 16.

Figure 3 tllustrates the dependence of the bifurcation point on the hardening exponent
ratio. As can be scen in the figure, the effect of a bilayered structure is substantial in
bifurcation with the long-wavelength mode. For the tubes with ny < n15 (x < 1) the delor-
mation is destabilized and the onset of bifurcation is accelerated compared with that of a
single tube with the same material propertics as cither the inner or outer tube. The surface
type bifurcation point nearly coincides with thut of a single tube with the same material
properties as the inner tube. This is remarkable in the case of a thick thner tube. It is
therefore considered that the surfuce type bifurcation occurring at the traction-free inner
surface is mainly governed by the material characteristics of the inner tube. Furthermore,
there is a specific bifurcation mode number with a nearly equal bifurcation point at which
an abrupt transition from the long-wavelength mode to the short-wavelength mode oceurs.
This bifurcation mode number decreases as the thickness of the inner tube increases. This
is partly attributable to the decay rate of the bifurcation mode amplitude with respect to
the radial direction for different mode numbers.

Figure 4 depicts the effect of 8 on the bifurcation behaviour. In the case of a single
tube, the terms associated with the yield stress g, can be taken out of the integrand of eqn

030 n,=16.0  seeeeeeees aeija Q3o no=16.0  cemeemeeeoe ae1/4
g, =0.392GPa T a=12 a,.=0.392GPs " :. :/:
—- o ——— G- — od -
g E_=205.9GPa I 2 E, =205.9GPa aez
< 020 r o201t
£ =
& L EY L
< o
] 2
Sot0f 2010}
2 2
@ @
o 4. A A A1)l A AL 1 LAdil i A 0 — . 4 i i 1101} s Al L ill2l A A
12345 0 0 100 500 12345 0 50 100 500
Mode number m Mode number m
(a) £=0.05 )y £=0.25

Fig. 3. Effect of hardening ratio 2 on hifurcation behaviour of hilayered tubes with (a) J = 0.05 and
(hy { =0.25.
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Fig. 4. Effect of yield stress ratio § on bifurcation behaviour of bilayered tubes with (a) ¢ = 0.05

and (b}, = 0.25.

(18). and bifurcation is therefore independent of &, (Tomita et al., 1985). However, as
expected from the bifurcation functional, I, eqn (18). the yield stress ratio [ affects the
bifurcation behavior of bilayered tubes. The influgnce of  on bifurcation with the long-
wavelength mode is essentially notable in tubes with 6, <0, (f < 1). For a bilayered tube
with a relatively thin inner tube, the difference in material properties affects the bifurcation
behavior up to higher modes. This might be attributable to the characteristic features of
the decay rate of the bifurcation mode. As fur as the present material characteristics are
concerned, bifurcation with the long-wavelength mode ts eritical.

With regard to the effect of Young's modulus ratio, y. on the bifurcation behaviour,
since the whole tube deforms plastically, y did not notably affect the bifurcation behaviour
at any mode number,

Figures 5 und 6 show the amplitude of velocity in the circumferential direction associ-
ated with the bifurcation mode, Vi = d¢,,./0r, for tubes with { = 0.05 and different hardening
exponent ratios. Although the bifurcation mode with the long-wavelength strongly depends
on the mode number, here, Vi form = Sisdepicted in Fig. 5. The maximum F¥is normalized
to 1.0. There is no distinct etfect of the bilayered structure in the bifurcation mode shape.
The mode with large amplitude has a tendency to localize in the vicinity of the inner surface
as the mode number increases. V¥ with m = 500, surface type bifurcation, for a = 1, 0.5,
0.263 and 0.25 is shown in Fig. 6. In the figure, { = 0.05 denotes the interface between the
inner and outer tubes, For the single tube, the position of the maximum amplitude value
of the bifurcation mode occurs at the traction-{ree surface. The amplitude of the bifurcation
mode decays exponentially from that at the position of maximum amplitude. However, for
the bilayered tube, the ratio of the hardening exponent, a, affects the shape of the bifurcation
mode. As z decreases, the position of maximum amplitude of the bifurcation mode moves
gradually away from the traction-free inner surface. When 2 = .25 the maximum amplitude
occurs within the outer tube, and the effect of nonuniform deformation extends to deep
within the outer tube. From this, it can be conjectured that the strain localization starts

n, =160
,.*0.392GPa
Q €,=205.9GPa

~1.0

Fig. 5. Normalized cigenmode ¢f with long wavelength,
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Fig. 6. Normalized eigenmode ¢f with short wavelength for single layered tube (). for bilayered
tubes with 7 =005(b) x =0.5(¢) x = 0.263 (d) x = 0.25.

ncar the boundary plane and then extends either 1into or away from the plane. A post
bifurcation analysis will need to be performed before this can be discussed in greater detail.

CONCLUSIONS

The bifurcation behaviour ot bilayered tubes subjected to uniform shrinkage at the
external surface under plane stratn condition was analysed numerically, and the influence
of thickness ratio and material property ratios such as hardening exponent 2, yield stress f§
and Young's modulus y upon the bifurcation behaviours was investigated.

According to the result of the present biturcation analysis, surface type bifurcation
with the short wavelength depends entirely on the matertal charactenstics of the inner tube,
that the surface type bifurcation point of bilayered tube nearly coincides with that of a
single tube having the same material properties as those of the inner tube. However, the
ratios of material properties substantially affect the long-wavelength bifurcation mode. The
deformation of a bilayered tube composed of an inner tube with low hardening exponent
(x < 1) or with high yield stress (§ > 1) are destabilized, and the onset of bifurcation
is accelerated. It is also concluded that the position of the maximum amplitude of the
bifurcation mode moves gradually from the traction-free inner surface into the outer tube
as the hardening exponent ratio decreases. This implies the possibility of onset of localization
starting from the surface of the boundary between different materials.
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